Structure Function Relationships of Dimethicone Copolyol

Tony O'Lenick

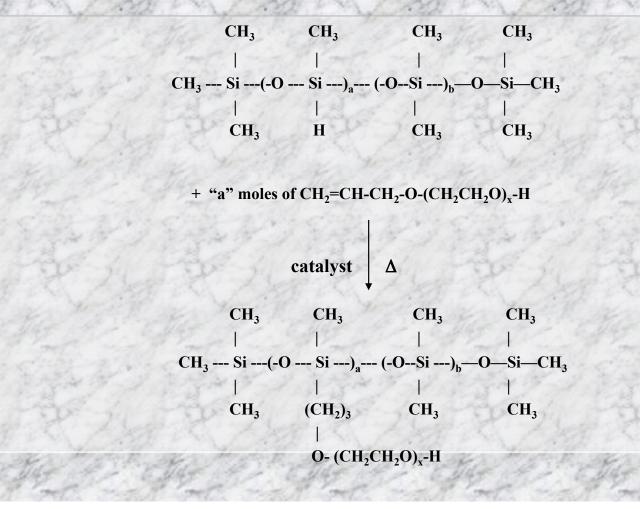
1999

Dimethicone Copolyol, DMC

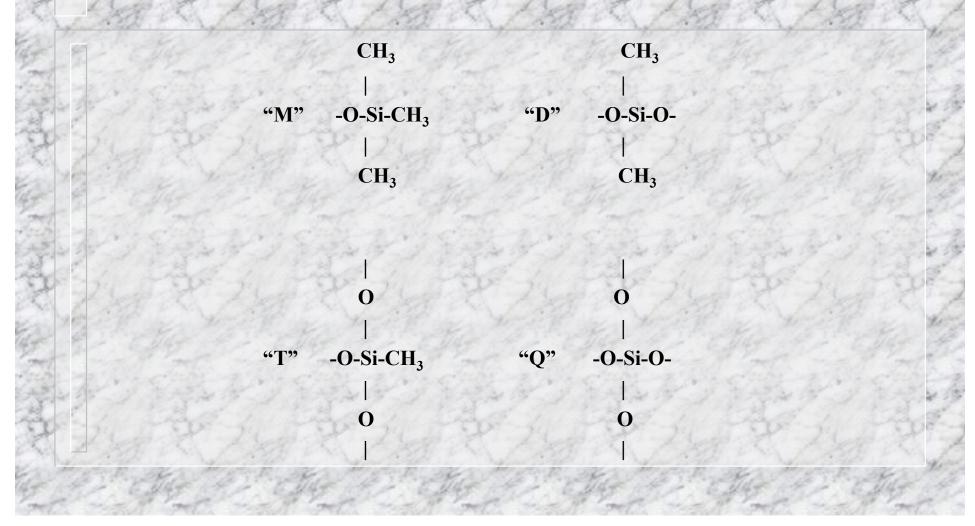
- DMC surfactants and their derivatives are an important and growing class of surfactants.
- They are used in a diverse area of applications due to their ability to provide maximum surface active properties in a cost-effective manner.
- Despite their growing use, studies regarding the basic understanding of the chemistry and the effect of structure on surfactant properties remain limited.

DMC Surfactants General Structure

STATISTICS AND THE


CH₃ CH₃ (CH₂)₃ CH₃

O-(CH₂CH₂O)_x-(CH₂CH(CH₃)O)_yH


DMC Surfactant Derivatives General Structure

where **R** = alkyl,amino, etc.

General Reaction Scheme for the Synthesis of DMC

DMC Nomenclature - "shorthand"

DMC Nomenclature - Organofunctional

CH₃ | "M*" -O-Si- CH₃

R where **R** = functional group

For example, the structure for MD₂D₃*M is:

CH₃ CH₃ CH₃ CH₃ CH₃ | | | | CH₃-Si-(O-Si)₂-(O-Si)₃-O-Si-CH₃ | | | | CH₃ CH₃ R CH₃

Properties Evaluated

- Solubility
- Cloud point
- Surface tension/cmc
- Spreading (in a polyester surface)
- Foaming (ASTM D 1173)
- Emulsification
- Draves wetting (ASTM D 2281)
- Draize primary ocular irritation (via independent lab)

DMC Structures Synthesized

Designation ^a	Molecular Weight	Equivalent MW ^b
MD*M	607	607
MD*DM	808	612
MD_2*D_2M	1108	619
MD ₃ *D ₅ M	1610	630
MD ₃ *D ₇ M	2111	642
MD ₄ *D ₈ M	2412	648

a) where D* is $-(CH_2)_3$ -O- $(CH_2CH_2O)_7$ -H

b) EMW = Molecular weight / number of D* units

Solubility at 1%w (24°C)

Designation	DI Water	Methanol	Mineral Oil	Silicone Oil
MD*M	Soluble	Soluble	Insoluble	Insoluble
MD ₂ *D ₂ M	Soluble	Soluble	Dispersible	Insoluble
MD ₃ *D ₇ M	Soluble	Soluble	Dispersible	Dispersible

Products with higher molecular weight showed better dispersibility in nonpolar media.

Cloud Point

Designation	% EO	Cloud Point, °C (1 % w)
MD*M	74.4	58
MD*DM	67.0	57
MD_2*D_2M	75.8	58
MD_3*D_5M	73.5	58
MD ₃ *D ₇ M	74.5	58
MD ₄ *D ₈ M	74.7	57

Surface Tension and CMC (24°C, DI water)

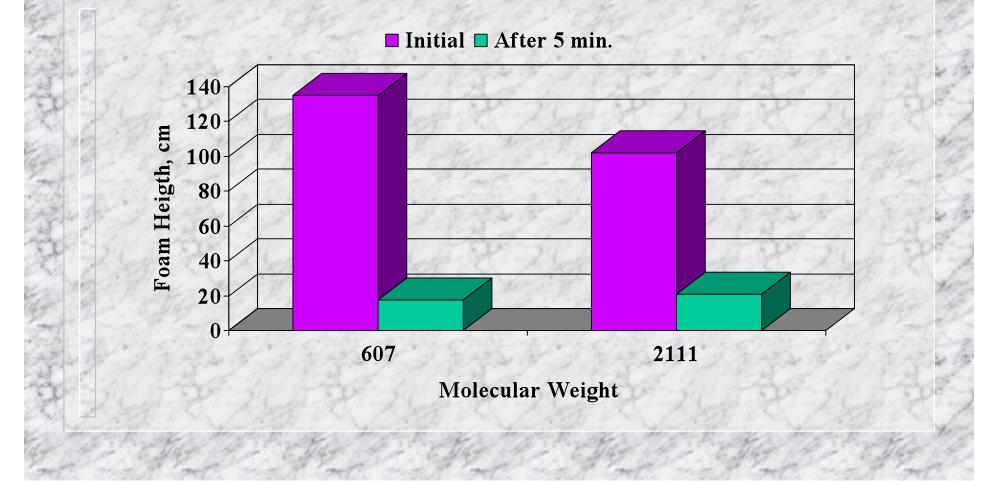
Designation	Surface Tension at CMC, dynes/cm ²	CMC, mg/L
MD*DM	20	3
MD_2*D_2M	19	4
MD ₃ *D ₅ M	23	6
MD ₃ *D ₇ M	21	5

Compares with typical values.

Spreading

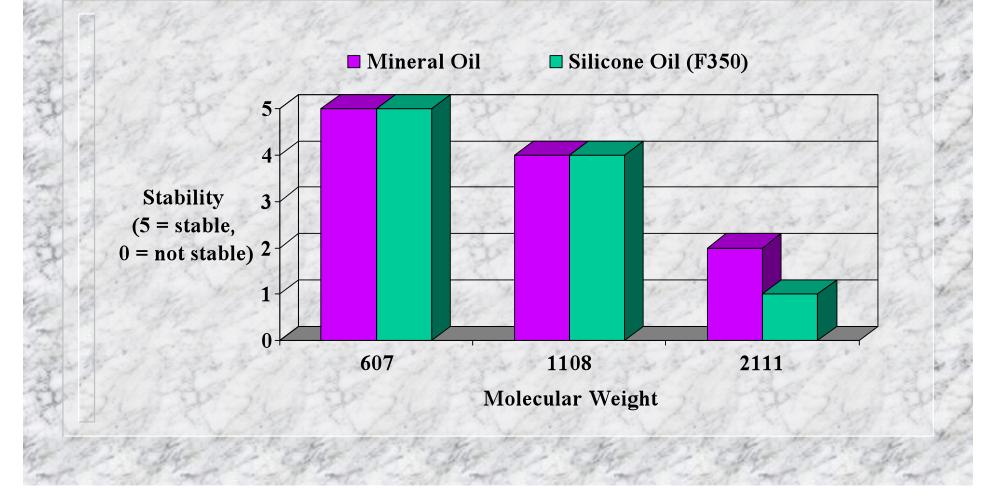
Designation	Relative Spreading Area
MD*M	4
MD*DM	6
MD_2*D_2M	8
MD ₃ *D ₅ M	2
MD ₃ *D ₇ M	4 2 2 4 2 2 4
MD ₄ *D ₈ M	2

Conditions: Polyester surface (3M overhead slide film), 10 µL sample, (DI water), diameter measured after 45 seconds using a Vernier caliper at 23±1°C (65% RH).

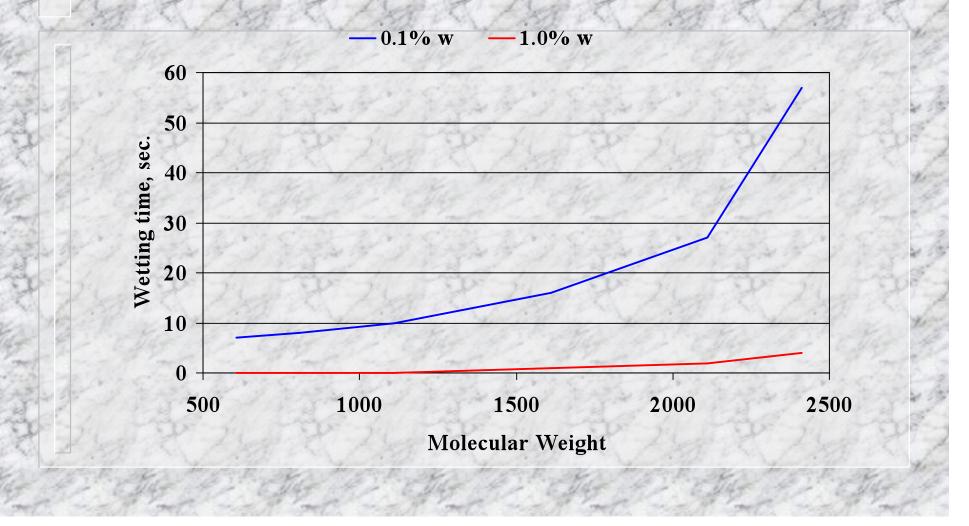

Relative area = area of sample / area of distilled water.

Spreading

- The isomers studied spread slightly better than water but cannot be considered superspreaders.
 - These materials are too hydrophilic and thus do not contain the needed subphases present that provide the necessary surfactant concentration gradient in the droplet spreading front that drives the spreading.

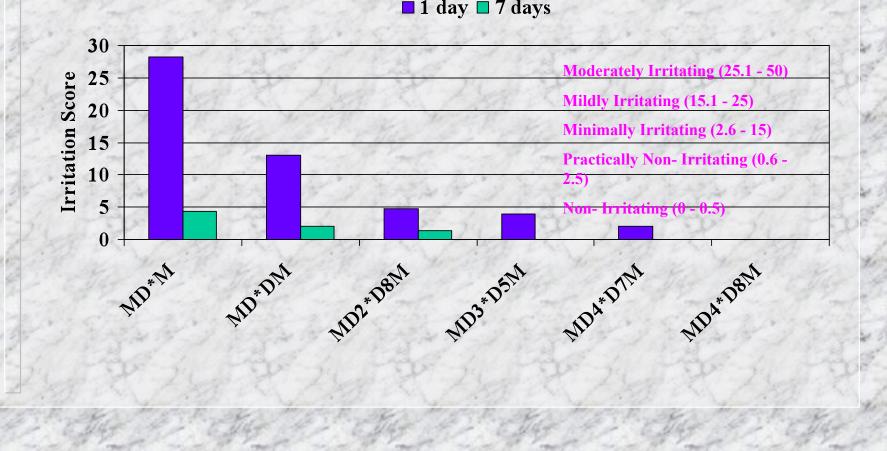

• $S_{L/S} = \gamma_{SA} - (\gamma_{SL} + \gamma_{LA})$ where A=air, L=liquid, S=substrate

DMC Foaming at 1% w (ASTM D1173)

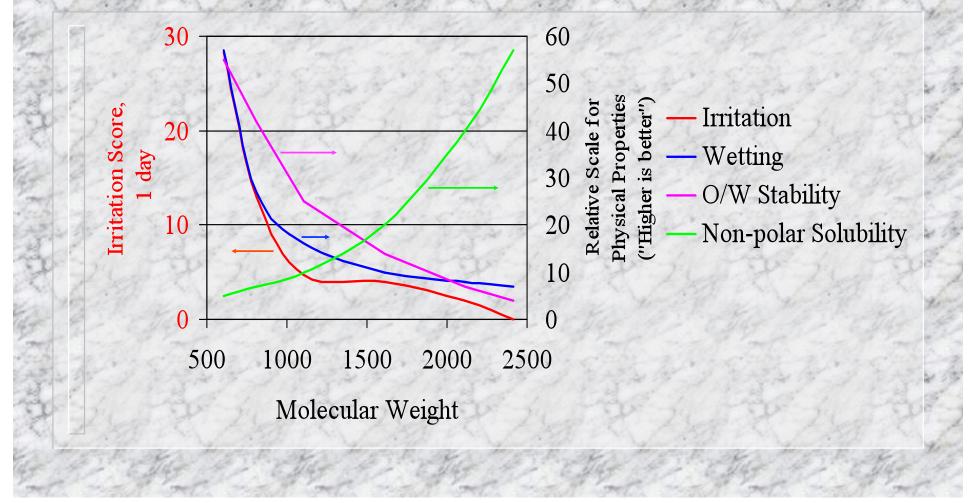


DMC Emulsification Ability

(5% DMC/47.5% Water/47.5% Oil, mixed 5 min. at high shear)


Draves Wetting of DMC's (24 C, DI water)

Wetting of DMC's


- There is a strong relationship between molecular weight and wetting. The lower molecular weight materials have faster wetting times.
- The smaller molecule allows for more efficient packing efficiency and dynamics. The materials with lower molecular weight were extremely effective at the higher concentration.

Draize Primary Ocular Irritation

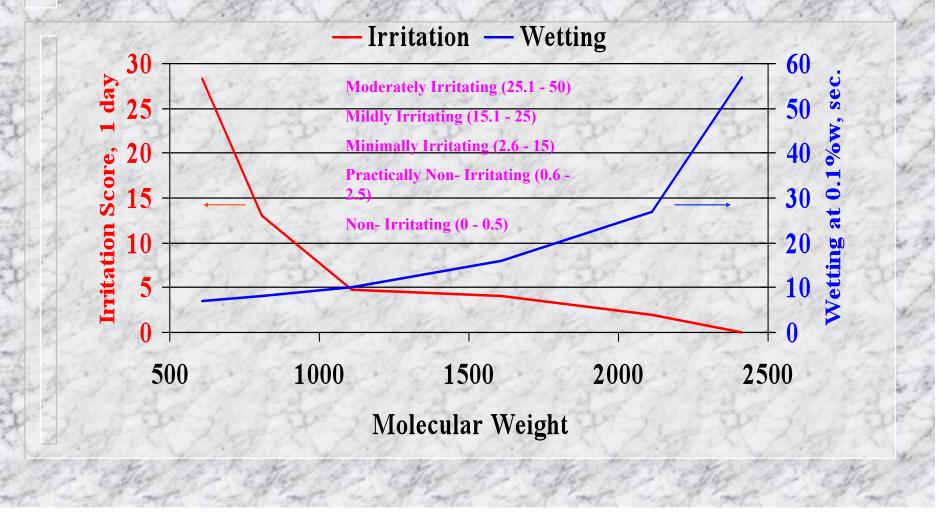
🗖 1 day 🗖 7 days

Correlation of Ocular Irritation and Physical Properties

Summary

- Solubility in polar media seems to relate to the length of the polyoxyethylene group.
- Products with higher molecular weight had better dispersibility in nonpolar oils.
 - The cloud point is related to the length of the polyoxyethylene group in the molecule and was rather independent of the silicone portion of the molecule.
- The molecules studied spread slightly better than water but cannot be considered superspreaders.

Summary


- The lower molecular weight materials have faster wetting times.
- The higher the molecular weight the lower the ocular irritation.
- The proper selection of a dimethicone copolyol can result in a product that has a desirable combination of properties.
- The properties, when correlated to the irritation data, allow for selection of cost-effective materials that are both effective and possess low irritation potential.

Draize Primary Ocular Irritation

Designation	1 day	3 days	7 days
MD*M	28.3	17.0	4.3
MD*DM	13.0	9.3	2.0
MD ₂ *D ₈ M	9.2	4.7	1.3
MD ₃ *D ₅ M	4.0	2.0	0.0
MD ₄ *D ₇ M	2.0	0.7	0.0
MD_4*D_8M	0.0	0.0	0.0

The higher the molecular weight the lower the ocular irritation.

Correlation of Ocular Irritation with Wetting

